解题思路:先根据角平分线的性质求出∠OBC+∠OCB的度数,再由三角形内角和定理即可得出结论.
∵∠ABC=40°,∠ACB=50°,BO、CO分别是∠ABC和∠ACB的平分线,
∴∠OBC+∠OCB=[1/2](∠ABC+∠ACB)=[1/2](40°+50°)=45°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-45°=135°.
点评:
本题考点: 三角形内角和定理.
考点点评: 本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
解题思路:先根据角平分线的性质求出∠OBC+∠OCB的度数,再由三角形内角和定理即可得出结论.
∵∠ABC=40°,∠ACB=50°,BO、CO分别是∠ABC和∠ACB的平分线,
∴∠OBC+∠OCB=[1/2](∠ABC+∠ACB)=[1/2](40°+50°)=45°,
∴∠BOC=180°-(∠OBC+∠OCB)=180°-45°=135°.
点评:
本题考点: 三角形内角和定理.
考点点评: 本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
最新问答: 语法不清楚 作业没有改错,求一检讨书1000字,急! 如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,AD+EC=AB. 以下措施不能减弱噪声的是( ) 如图5.3-11 已知角1与角2,角2与角3分别互补 且角5=63° 高一化学红色溶液有哪些 如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合), ABC-A1B1C1是各棱长均相等的正三棱柱,D是侧棱CC1的中点.求证:平面AB1D⊥平面ABB1A1. 招待想问客人想吃什么怎么用英语说 已知直线经过点(1,2),并且与点A(2,3)和B(0,-5)的距离相等,求次直线的方程. 张老师在指导学生记忆化学方程式时指出很多反应可以归纳,如:氧化钙、氢氧化钙、碳酸钙等与盐酸反应时生成物中都含有氯化钙和水 twice as often 怎么用?急, 4x+5y=10 3x-2y=19 All the people who have been here can___ tell him from us 礼貌、修养、个人形象设计...100分求解 如果我能活下去我想我会爱你.用英语怎么翻译 世界上最大的淡水湖是 A.贝加尔湖 B.苏必利尔湖 难忘的小学生活 作文 帮帮忙,我要写一篇作文《逆境出人才》,是反面论证。不用学霸帮我写,只要点播点播我,提示提示我就采纳 梅赞 作文
相关问答: 跪求