已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结
1个回答

解题思路:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;

先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;

一元二次方程ax2+bx+c-m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.

①∵二次函数y=ax2+bx+c与x轴有两个交点,

∴b2-4ac>0,故①正确;

②∵抛物线的开口向下,

∴a<0,

∵抛物线与y轴交于正半轴,

∴c>0,

∵对称轴x=-[b/2a]>0,

∴ab<0,

∵a<0,

∴b>0,

∴abc<0,故②正确;

③∵一元二次方程ax2+bx+c-m=0没有实数根,

∴y=ax2+bx+c和y=m没有交点,

由图可得,m>2,故③正确.

故选:D.

点评:

本题考点: 二次函数图象与系数的关系.

考点点评: 本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.