已知在三角形ABC中,角ABC的对边分别为abc.且4cos^2*C/2-cos2C=7/2.a+b=5.c=根号7 求
1个回答

∵ab≤(a+b)^2/4

=25/4

ab最大值 25/4<9

CosC

=(a^2+b^2-c^2)/2ab

=[(a+b)^2-c^2-2ab]/2ab

=(25-7-2ab)/2ab

=(18-2ab)2ab

=9/ab-1>0 (9/25/4=36/25>1)

∴0°<C<90°

∵4cos^2C/2-cos2C

=2(2cos^2C/2-1)+2-cos2C

=2cosC+2-cos2C

=2cosC+2-2cos^2C+1

=-2cos^2C+2cosC+3

=7/2

∴cos^2C-cosC+1/4=0

(cosC-1/2) ^2=0

CosC=±1/2

C=60°

C=120°舍掉(∵0°<C<90°上边已确定)

SinC=sin60°=√3/2

∵.a+b=5

∴(a+b) ^2

=a^2+b^2+2ab

=25

A^2+b^2=25-2ab

c ^2=√7 ^2=7

C^2=a^2+b^2-2abcosC

ab=(a^2+b^2-c^2)/2cosC

=(25-2ab-7)/2*1/2

=18-2ab

3ab=18

ab=6

S=1/2absinC

=1/2*6*√3/2

=3√3/2

C=60° S=3√3/2

吉林 汪清LLX