已知集合A={x|3≤x<7},B={x|2<x<10},C={x|5-a<x<a}.
收藏:
0
点赞数:
0
评论数:
0
1个回答

解题思路:(1)把集合A和B用数轴表示出来,由图和运算定义求出并集、补集和交集;

(2)因集合C含有参数故需要考虑C=∅和C≠∅两种情况,再由子集的定义求出a的范围,最后要把结果并在一起.

(1)由题意用数轴表示集合A和B如图:

由图得,A∪B={x|2<x<10},∁RA={x|x<3或x≥7},

∴(∁RA)∩B={x|2<x<3或7≤x<10}(6分)

(2)由(1)知A∪B={x|2<x<10},

①当C=∅时,满足C⊆(A∪B),此时5-a≥a,得a≤

5

2;(8分)

②当C≠∅时,要C⊆(A∪B),则

5−a<a

5−a≥2

a≤10,解得

5

2<a≤3;(12分)

由①②得,a≤3.

点评:

本题考点: 子集与交集、并集运算的转换.

考点点评: 本题考查了集合的混合运算和子集的定义应用,对于集合含有参数一定注意集合为空集时,故需要进行分类求解,当集合用不等式表示时,借助于数轴来求交集、并集和补集,更直观、准确,考查了数形结合和分类讨论思想.

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识