(1)作AM⊥x轴,BN⊥x轴,M、N为垂足
故:∠AOM+∠OAM=90°,∠OBN+∠BON=90°
因为点A的坐标是(-1,2)
故:OM=1,AM=2
因为OB⊥OA
故:∠AOM+∠BON=90°
故:∠OAM=∠BON,∠OBN=∠AOM
故:△OAM∽△BON
故:OA/OB=AM/ON=OM/BN=1/2
故:BN=2,ON=4
故:B(4,2)
(2)设过点A、O、B的抛物线的表达式为y=ax²+bx+c
因为过点A(-1,2)、O(0,0)、B(4,2)
故:a-b+c=2,c=0,16a+4b+c=2
故:a=1/2,b=-3/2,c=0
故:y=1/2•x²-3/2•x
(3)因为A(-1,2)、B(4,2),纵坐标相等
故:AB‖x轴
如果使得S△ABP=S△ABO(两个三角形共底,只要高相等即可)
又△ABO的高为2(AM=BN=2)
故:P的纵坐标为y1=4或y2=-2
当y1=4时,1/2•x²-3/2•x=4
故:x1=(3+√41)/2,x2=(3-√41)/2
此时P((3+√41)/2,4)或P((3-√41)/2,4)
当y1=-2时,1/2•x²-3/2•x=-2
无解
故:P((3+√41)/2,4)或P((3-√41)/2,4)