解题思路:(1)由折叠的性质可知△ABP≌AQP,根据全等三角形的性质可知AB=AQ=10,利用勾股定理即可求出线段DQ的长度;
(2)由(1)可知DQ=6,所以CQ=DC-DQ=4,设PQ=x,则PB=PQ=x,所以CP=BC-BP=8-x,利用勾股定理可建立关于x的方程,解方程求出x的值即可.
(1)由折叠的性质可知△ABP≌AQP,
∴AB=AQ=10,
∵四边形ABCD是矩形,
∴∠D=90°,
∵AD=8cm,
∴DQ=
AQ2−AD2=6cm,
∴线段DQ的长度是6cm;
(2)由(1)可知DQ=6,
∴CQ=DC-DQ=4,
设PQ=x,则PB=PQ=x,
∴CP=BC-BP=8-x,
∴x2=42+(8-x)2,
解得:x=5,
∴线段PQ的长度是5.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 本题主要考查了矩形的性质,勾股定理的运用以及翻折变换前后的两个图形全等的性质,是综合题,但难度不大.