已知x>1,y>1,且2logx(y)—2logy(x)+3=0,试求x^2—4y^2的最小值
1个回答

由换底公式:loga(b)=logc(b)/logc(a)

又:2logx(y)-2logy(X)+3=0

则:

2lgy/lgx-2lgx/lgy+3=0

2(lgy)^2-2(lgx)^2+3(lgx*lgy)=0

2(lgx)^2-3(lgx*lgy)-2(lgy)^2=0

(lgx-2lgy)(2lgx+lgy)=0

由于:

x>1,y>1

则:lgx>0,lgy>0

则:2lgx+lgy>0

则:lgx-2lgy=0

lgx=2lgy

lgx=lg(y^2)

则:x=y^2

则:

x^2-4y^2

=x^2-4x

=x^2-4x+4-4

=(x-2)^2-4

当x=2时,x^2-4y^2取最小值-4