已知函数f(x)=ae^x,g(x)=㏑x-㏑a,其中a为常数,且函数y=f(x)和y=g(x)的图像在其与两坐标轴的交
1个回答

算出不是一个范围只有 -0.5 先求出a=1 f(x)=ae^x,f(0)=a,与y轴的交点(0,a),f′(x)=ae^x,f′(0)=a;

g(x)=lnx-lna,g(a)=lna-lna=0,与x轴的交点(a,0),g′(x)=1/x,g′(a)=1/a;

由于y=f(x)和y=g(x)的图像在其与两坐标轴的交点处的切线相互平行,故有a=1/a,即有a²=1,

∴a=1.

再代入不等式把m反解出来 并分类 定义域为x大于0且不等于1 x大于0小于1 此时m大于等于-0.5 x大于1此时m小于等于-0.5 求交集m=-0.5