(e^(x+y)-e^x)dx+.(e^(x+y)-e^y)dy=0微分方程求通解
收藏:
0
点赞数:
0
评论数:
0
2个回答

(e^(x+y)-e^x)dx+.(e^(x+y)-e^y)dy=0,

(e^x)(e^y-1)dx+(e^y)(e^x-1)dy=0,

(e^x)dx/(e^x-1)=-(e^y)dy/(e^y-1),

[d(e^x-)]/(e^x-1)=- [d(e^y-1)]/(e^y-1),

两边积分,得ln(e^x-1)+C=-ln(e^y-1),即ln(e^x-1)+ln(e^y-1) +C=0,(C为任意常数)

故ln[(e^x-1)(e^y-1)] +C=0,(C为任意常数).

-----------------------------------------

代入原方程验证,正确.[因(e^x-1).>0,(e^y-1)>0]

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识