求微分方程的通解 1) dy /dx + y =0 ( 2) y-y' =1+xy' (3) (e^x+y -e^x )
1个回答

1)∵dy/dx+y=0 ==>dy/y=-dx

==>ln│y│=-x+ln│C│ (C是积分常数)

==>y=Ce^(-x)

∴原微分方程的通解是y=Ce^(-x) (C是积分常数)

2)∵y-y'=1+xy'==>(x+1)y'=y-1

==>dy/(y-1)=dx/(x+1)

==>ln│y-1│=ln│x+1│+ln│C│ (C是积分常数)

==>y-1=C(x+1)

==>y=C(x+1)+1

∴原微分方程的通解是y=C(x+1)+1 (C是积分常数)

3)此题有错!