(1)∵Sn+Sn-1=2an,n≥2,①
∴Sn-1+Sn-2=2an-1,n≥3,②
①-②,得:an+an-1=2an-2an-1,n≥2.
∴an=3an-1,
∴数列{an}从第2项起是公比为3的等比数列,
S2+S1=2a2,a1+a2+a1=2a2,
∵a1=[9/2],∴a2=2a1=9,
∴当n≥2时,an=9•3n−2=3n,
∴an=
9
2,n=1
3n,n≥2.
(2)n≥2时,f(x)=x•log3x,b1=3,
bn=f(an)=3n•log33n=n•3n,n=1时也成立,
∴bn=n•3n,
∴Tn=1×3+2×32+…+n×3n,①
3Tn=1×32+2×33+…+n×3n+1,②
两式作差得:
-2Tn=3+32+…+3n-n×3n+1
=
3(1−3n)
1−3-n×3n+1,
∴Tn=
3
4+(
n
2−
1
4)•3n+1.…(13分)