(2014•长沙二模)数列{an}的前n项和为Sn,a1=[9/2],且对任意的n>1,n∈N*均满足Sn+Sn-1=2
1个回答

(1)∵Sn+Sn-1=2an,n≥2,①

∴Sn-1+Sn-2=2an-1,n≥3,②

①-②,得:an+an-1=2an-2an-1,n≥2.

∴an=3an-1

∴数列{an}从第2项起是公比为3的等比数列,

S2+S1=2a2,a1+a2+a1=2a2

∵a1=[9/2],∴a2=2a1=9,

∴当n≥2时,an=9•3n−2=3n

∴an=

9

2,n=1

3n,n≥2.

(2)n≥2时,f(x)=x•log3x,b1=3,

bn=f(an)=3n•log33n=n•3n,n=1时也成立,

∴bn=n•3n,

∴Tn=1×3+2×32+…+n×3n,①

3Tn=1×32+2×33+…+n×3n+1,②

两式作差得:

-2Tn=3+32+…+3n-n×3n+1

=

3(1−3n)

1−3-n×3n+1

∴Tn=

3

4+(

n

2−

1

4)•3n+1.…(13分)