x^3+y^3+z^3-3xyz
=[(x+y)^3-3xy(x+y)]+z^3-3xyz
=[(x+y)^3+z^3]-3xy(x+y+z)
=[(x+y+z)^3-3(x+y)z(x+y+z)]-3xy(x+y+z)
=(x+y+z)^3-3(xy+yz+zx)(x+y+z)
=(x+y+z)[(x+y+z)^2-3(xy+yz+zx)]
=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)
x+y+z=0
所以x^3+y^3+z^3-3xyz=0
所以x^3+y^3+z^3=3xyz