(2002•苏州)已知:如图,梯形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.
1个回答

解题思路:(1)由AB∥CD可得到∠FCE=∠B,根据对顶角的性质及中点的性质,利用ASA即可判定△ABE≌△FCE;

(2)根据勾股定理可求得AE的长,由第一问可得AE=EF,从而不难求得AF的长.

(1)证明:∵AB∥CD

∴∠FCE=∠B

∵∠CEF=∠BEA,CE=BE

∴△ABE≌△FCE;

(2)∵△ABE≌△FCE

∴AE=EF

∵BC⊥AB,BC=10,AB=12

∴AE=13

∴AF=2AE=26.

点评:

本题考点: 梯形;全等三角形的判定与性质;勾股定理.

考点点评: 此题主要考查学生对全等三角形的判定方法及相似三角形的判定方法的综合运用.