解题思路:(1)延长CB至E使BE=DN,连接AE,由三角形全等可以证明AH=AB;
(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,延长EB、FC交于点G,则四边形AEGF是矩形,又AE=AD=AF,所以四边形AEGF是正方形,设AD=x,则EG=AE=AD=FG=x,所以BG=x-2;CG=x-3;BC=2+3=5,在Rt△BGC中,(x-2)2+(x-3)2=52解之 得x1=6,x2=-1,所以AD的长为6.
(1)答:AB=AH,
证明:延长CB至E使BE=DN,连接AE,
∵四边形ABCD是正方形,
∴∠ABC=∠D=90°,
∴∠ABE=180°-∠ABC=90°
又∵AB=AD,
∵在△ABE和△ADN中,
AB=AD
∠ABE=∠ADN
BE=DN,
∴△ABE≌△ADN(SAS),
∴∠1=∠2,AE=AN,
∵∠BAD=90°,∠MAN=45°,
∴∠2+∠3=90°-∠MAN=45°,
∴∠1+∠3=45°,
即∠EAM=45°,
∵在△EAM和△NAM中,
AE=AN
∠EAM=∠NAM
AM=AM,
∴△EAM≌△NAM(SAS),
又∵EM和NM是对应边,
∴AB=AH(全等三角形对应边上的高相等);
(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,
∵AD是△ABC的高,
∴∠ADB=∠ADC=90°
∴∠E=∠F=90°,
又∵∠BAC=45°
∴∠EAF=90°
延长EB、FC交于点G,则四边形AEGF是矩形,
又∵AE=AD=AF
∴四边形AEGF是正方形,
由(1)、(2)知:EB=DB=2,FC=DC=3,
设AD=x,则EG=AE=AD=FG=x,
∴BG=x-2;CG=x-3;BC=2+3=5,
在Rt△BGC中,(x-2)2+(x-3)2=52
解得x1=6,x2=-1,
故AD的长为6.
点评:
本题考点: 正方形的判定与性质;全等三角形的判定与性质;勾股定理;翻折变换(折叠问题).
考点点评: 本题主要考查正方形的性质和三角形全等的判断,题目的综合性很强,难度中等.