(1)
a4=2a3-a2
a3=2a2-a1
a4=2(2a2-a1)-a2=3a2-2a1=3a2-2×8=3a2-16=2
3a2=18
a2=6
a2-a1=6-8=-2
a3=2a2-a1=2×6-8=12-8=4
(a3-a2)-(a2-a1)=(4-6)-(6-8)=0
a(n+2)=2a(n+1)-an
a(n+2)-a(n+1)=a(n+1)-an=...=a2-a1=-2,为定值.
数列{an}是以8为首项,-2为公差的等差数列.
an=8-2(n-1)=10-2n
数列{an}的通项公式为an=10-2n
(2)
令10-2n≥0,解得n≤5,即数列前5项非负,从第6项开始,以后各项均