(1)
S1/(a1+2)+S2/(a2+2)+……+Sn/(an+2)=(1/4)Sn
S1/(a1+2)+S2/(a2+2)+……+S(n-1)/(a(n-1)+2)=(1/4)S(n-1)
相减得:Sn=1/4an(an+2)
所以S(n-1)=1/4 a(n-1)(a(n-1)+2)
两式想减得(1/4)*(an+a(n-1))(an-a(n-1)-2)=0
因为an各项都是正数,所以an+a(n-1)大于零
得到an-a(n-1)=2 (等差数列定义)
由原始式子可得a1=2
所以an=2n
Sn=n(n+1)
(2)
1/Sn=1/n(n+1)=1/n -1/(n+1)
应用裂项求和法
Tn=(1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1))
=1-[1/(n+1)]