f'(x)=(x-a)'(x-b)(x-c)+(x-a)(x-b)'(x-c)+(x-a)(x-b)(x-c)'
=(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)
所以f'(a)=(a-b)(a-c)
f'(b)=(b-a)(b-c)
f'(c)=(c-a)(c-b)
所以原式=a/(a-b)(a-c)+b/(b-a)(b-c)+c/(c-a)(c-b)
=a/(a-b)(a-c)-b/(a-b)(b-c)+c/(a-c)(b-c)
=[a(b-c)-b(a-c)+c(a-b)]/(a-b)(a-c)(b-c)
=(ab-ac-ab+bc+ac-bc)/(a-b)(a-c)(b-c)
=0/(a-b)(a-c)(b-c)
=0