对应同弧,所以角BAC=角BPC=60,角ABC=角APC=60
三角形ABC为正三角形
三角形ABC面积=4√3=1/2 * AB*BC*sinB=√3/4 * BC^2
BC=4
角PBC=角ABP+角ABC=75
正弦定理:
BC/sinBPC=PC/sinPBC
PC=BC × sinPBC/sinBPC=4×sin75/sin60
sin75°=sin(30°+45°)
=sin30°cos45°+cos30°sin45°
=(√6+√2)/4
PC=(√6+√2)/(√3/2)
=2√3(√6+√2)/3
=(6√2+2√6)/3
=2√2+2√6/3