已知数列{a}满足a1=a,对任意m,n属于N+,am+n=am*an恒成立
1个回答

1.

令m=1

a(n+1)=an×a1=a×an

题目没有给出a的取值范围,因此需要分类讨论:

(1)

a=0时,数列是各项均为0的常数数列,an=0

(2)

a≠0时,a(n+1)/an=a,为定值.

数列是以a为首项,a为公比的等比数列.

an=aⁿ

数列{an}的通项公式为an=aⁿ.

2.

证:

bn=anlnan=aⁿ×ln(aⁿ)=(nlna)×aⁿ

b(n+1)/bn=[(n+1)lna]a^(n+1)/[(nlna)aⁿ]=a×(n+1)/n

a>1 (n+1)/n>1

b(n+1)/bn>1

b(n+1)>bn

数列{bn}是递增数列.

3.

证:

cn=1/[loga(a(2n)×loga(a(2(n+1))]

=1/[loga(a^(2n)) ×loga(a^(2(n+1))]

=1/[2n×2(n+1)]

=(1/4)[1/n(n+1)]

=(1/4)[1/n -1/(n+1)]

Sn=c1+c2+...+cn

=(1/4)[1-1/2+1/2-1/3+...+1/n- 1/(n+1)]

=(1/4)[1- 1/(n+1)]

=1/4 -1/[4(n+1)]