已知数列{an}中,an=n(n+1)(n+2),又Sn=kn(n+1)(n+2)(n+3),使确定常数k
3个回答

n=1时,

S1=k×1×(1+1)×(1+2)×(1+3)=k×2×3×4=a1=1×2×3

k=(1×2×3)/(2×3×4)=1/4

假设当n=m (m∈N,且m≥1)时,Sm=m(m+1)(m+2)(m+3)/4,则当n=m+1时,

S(m+1)=Sm+a(m+1)

=m(m+1)(m+2)(m+3)/4 +(m+1)[(m+1)+1][(m+1)+2]

=m(m+1)(m+2)(m+3)/4 +(m+1)(m+2)(m+3)

=[(m+1)(m+2)(m+3)/4](m+4)

=(m+1)(m+2)(m+3)(m+4)/4

=(m+1)[(m+1)+1][(m+1)+2][(m+1)+3]/4,同样满足表达式.

综上,得Sn=n(n+1)(n+2)(n+3)/4

k=1/4