n=1时,
S1=k×1×(1+1)×(1+2)×(1+3)=k×2×3×4=a1=1×2×3
k=(1×2×3)/(2×3×4)=1/4
假设当n=m (m∈N,且m≥1)时,Sm=m(m+1)(m+2)(m+3)/4,则当n=m+1时,
S(m+1)=Sm+a(m+1)
=m(m+1)(m+2)(m+3)/4 +(m+1)[(m+1)+1][(m+1)+2]
=m(m+1)(m+2)(m+3)/4 +(m+1)(m+2)(m+3)
=[(m+1)(m+2)(m+3)/4](m+4)
=(m+1)(m+2)(m+3)(m+4)/4
=(m+1)[(m+1)+1][(m+1)+2][(m+1)+3]/4,同样满足表达式.
综上,得Sn=n(n+1)(n+2)(n+3)/4
k=1/4