1.f(x+y)=f(x)+f(y)-1
令x=y=0,则有:f(0)=f(0)+f(0)-1
f(0)=1
再另y=-x,则有:f(0)=f(x)+f(-x)-1=1
f(x)+f(-x)=2,f(-x)=2-f(x)
任取X1,X2属于R,且X1>X2
则:
f(x1-x2)
=f(x1)+f(-x2)-1
=f(x1)+2-f(x2)-1
=f(x1)-f(x2)+1
又当x大于0,f(x)大于1,
所以f(x1-x2)==f(x1)-f(x2)+1>1
所以f(x1)-f(x2)>0
故f(x)是增函数
2.因为f(x)是R上的增函数
所以x在[1,2]上当x取1的时候有最小值,即为x取2的时候最大值
f(3)=f(1)+f(2)-1=f(1)+f(1)+f(1)-2=4
所以f(1)=2
f(2)=f(3)-f(1)+1=4-2+1=3
所以最小值为2,最大值为3.