解题思路:先根据一元二次方程根与系数的关系,可知圆心距=两圆半径之和,再根据圆与圆的位置关系即可判断.
∵⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,
∴两根之和=5=两圆半径之和,
又∵圆心距O1O2=5,
∴两圆外切.
故选B.
点评:
本题考点: 圆与圆的位置关系.
考点点评: 此题综合考查一元二次方程根与系数的关系及两圆的位置关系的判断.
圆和圆的位置与两圆的圆心距、半径的数量之间的关系:
①两圆外离⇔d>R+r;
②两圆外切⇔d=R+r;
③两圆相交⇔R-r<d<R+r(R≥r);
④两圆内切⇔d=R-r(R>r);
⑤两圆内含⇔d<R-r(R>r).