1.设等差数列的公差为d,
根据a4是a3与a7则有a4^2=a3·a7=(a4-d)(a4+3d)
化简即:2da4=3d^2(d≠0)
则有:a4=3d/2
Sn=n·a1+n(n-1)d/2=n(a4-3d)+n(n-1)d/2
S8=8(3d/2-3d)+8*7*d/2=32
d=2,a1=-3
S10=10*(-3)+10*9*2/2=60
2.a6*a(2n-6)=an^2=2^2n(an>0)
即:an=2^n
可知{an}是首项为2公比为2的等比数列
log2a1+log2a3+...+log2a(2n-1)=1+2+...+2n-1=n*(2n-1)
3.a(m-2)+a(m+2)=2*am=am^2
am=0或am=2
S(2m-1)=(a1+a(2m-1))*(2m-1)/2=2am*(2m-1)/2=am*(2m-1)=38
2m-1=38/am
am≠0,am=2
m=10