1.公差不为零的等差数列{an}的前n项和为Sn,若a4是a3与a7的等比中项,S8=32,则S10=?
2个回答

1.设等差数列的公差为d,

根据a4是a3与a7则有a4^2=a3·a7=(a4-d)(a4+3d)

化简即:2da4=3d^2(d≠0)

则有:a4=3d/2

Sn=n·a1+n(n-1)d/2=n(a4-3d)+n(n-1)d/2

S8=8(3d/2-3d)+8*7*d/2=32

d=2,a1=-3

S10=10*(-3)+10*9*2/2=60

2.a6*a(2n-6)=an^2=2^2n(an>0)

即:an=2^n

可知{an}是首项为2公比为2的等比数列

log2a1+log2a3+...+log2a(2n-1)=1+2+...+2n-1=n*(2n-1)

3.a(m-2)+a(m+2)=2*am=am^2

am=0或am=2

S(2m-1)=(a1+a(2m-1))*(2m-1)/2=2am*(2m-1)/2=am*(2m-1)=38

2m-1=38/am

am≠0,am=2

m=10