(1)a=2时,fx)=x 2-2x+ln(x+1),则f′(x)=2x-2+
1
x+1 =
2x 2 -2
x+1 ,
f′x)=0,x=±
2
2 ,且x>-1,
当x∈(-1,-
2
2 )∪(
2
2 ,+∞)时f′x)>0,当x∈(-
2
2 ,
2
2 )时,f′x)<0,
所以,函f(x)的极大值点x=-
2
2 ,极小值点x=
2
2 .
(2)因f′(x)=2x-a+
1
x+1 ,f′x)>x,
2x-a+
1
x+1 >x,
即a<x+
1
x+1 ,
y=x+
1
x+1 =x+1+
1
x+1 -1≥1(当且仅x=0时等号成立),
∴y min=1.∴a≤1
(3)①当n=1时,c 2=f′(x)=2c 1-a+
1
c 1 +1 ,
又∵函y=2x+
1
x 当x>1时单调递增,c 2-c 1=c 1-a+
1
c 1 +1 =c 1+1+
1
c 1 +1 -(a+1)>2-(a+1)=1-a≥0,
∴c 2>c 1,即n=1时结论成立.
②假设n=k时,c k+1>c k,c k>0则n=k+1时,
c k+1=f′(c k)=2c k-a+
1
c 1 +1 ,
c k+2-c k+1=c k+1-a+
1
c k+1 +1 =c k+1+1+
1
c k+1 +1 -(a+1)>2-(a+1)=1-a≥0,
c k+2>c k+1,即n=k+1时结论成立.由①,②知数{c n}是单调递增数列.