已知函数f(x)=x 2 -ax+ln(x+1)(a∈R).
1个回答

(1)a=2时,fx)=x 2-2x+ln(x+1),则f′(x)=2x-2+

1

x+1 =

2x 2 -2

x+1 ,

f′x)=0,x=±

2

2 ,且x>-1,

当x∈(-1,-

2

2 )∪(

2

2 ,+∞)时f′x)>0,当x∈(-

2

2 ,

2

2 )时,f′x)<0,

所以,函f(x)的极大值点x=-

2

2 ,极小值点x=

2

2 .

(2)因f′(x)=2x-a+

1

x+1 ,f′x)>x,

2x-a+

1

x+1 >x,

即a<x+

1

x+1 ,

y=x+

1

x+1 =x+1+

1

x+1 -1≥1(当且仅x=0时等号成立),

∴y min=1.∴a≤1

(3)①当n=1时,c 2=f′(x)=2c 1-a+

1

c 1 +1 ,

又∵函y=2x+

1

x 当x>1时单调递增,c 2-c 1=c 1-a+

1

c 1 +1 =c 1+1+

1

c 1 +1 -(a+1)>2-(a+1)=1-a≥0,

∴c 2>c 1,即n=1时结论成立.

②假设n=k时,c k+1>c k,c k>0则n=k+1时,

c k+1=f′(c k)=2c k-a+

1

c 1 +1 ,

c k+2-c k+1=c k+1-a+

1

c k+1 +1 =c k+1+1+

1

c k+1 +1 -(a+1)>2-(a+1)=1-a≥0,

c k+2>c k+1,即n=k+1时结论成立.由①,②知数{c n}是单调递增数列.