最佳答案:只有开区间可导,端点不必可导,所以中值定理都只要求开区间可导
最佳答案:f(x)可导和它的导函数f`(x)连续没关系例子:当x≠0,f(x)=x^3/2sin1/x x=0时f(x)=0 根据定义可以验证f(x)在0可导,但f`(x
最佳答案:可导不一定连续 但连续一定可导 在分段点(如分段函数)左导数不一定等于右倒数,两者不等说明整个函数在该点不可导 但并不表明该点在某区间内不可导 熟悉定理在开区间
最佳答案:如果f(x)在开区间(a,b)上的每一点都可导,那么称f(x)在(a,b)上可导.如果另外还满足f(x)在a点右可导,在b点左可导,那么称f(x)在闭区间[a,
最佳答案:j教材没有错误,你可以看看这个函数,y=根号(1-x^2),这个是一个半圆弧,都在x轴上方.对于(1,0)和(-1,0)点他们的左右导数都是不存在的.如果用极限
最佳答案:导函数细分有左可导和右可导,当且仅当函数在点左右都可导时,称该函数在此点可导,如果对于区间中的任意点都左右可导,称为在这个区间可导.如果取闭区间的两端点的话,则
最佳答案:首先函数可导但并没有说是函数连续,如果该函数不连续,即使区间上各处可导也可能不连续.
最佳答案:设 h(x)=f(x)-g(x)h(0)=f(0)-g(0)=0h(1)=f(1)-g(1)>0h'(0)=f'(0)-g'(0)
最佳答案:楼上几位说的都存在不同程度的问题.楼上说的在概念上有问题,例子也给举错了,y = |x| 在 (-1,0]上定义时,在x = 0处的左导数是存在的,就等于-1,
最佳答案:在(a,x)上存在一点d,使得(f(x)-f(a))/(x-a)=f'(d)在(a,b)上存在一点e,使得f(b)-f(a))/(b-a)=f'(e)如果d=e
最佳答案:解题思路:由题可得,则,,故,由二次函数的最值可得。D
最佳答案:这句话“一个函数在一个闭区间上连续导数”。我的看法是这样说容易让人误解,其实这句话的准确表达应该是:“一个函数在一个闭区间上存在连续的导函数”。这句话所表达意思
最佳答案:定理:f为(a,b)的凸函数,则其左右导数f'{-},f'{+}存在,且1.f'{-},f'{+}递减.2.f'{-}(c)≥f'{+}(c)3.c,d∈(a,
最佳答案:有定义未必可导,你要自己用导数定义式来求端点处的导数是否存在,如分段函数f(x)=-x,x=0
最佳答案:题目有问题比如 f(x) = x ,a =1,b = 2 ,则 n>=2时,就找不到满足题意的实数ξ∈(a,b),使得f(ξ)=f'(ξ)(b-ξ)/n成立.少