最佳答案:函数连续是此函数的图像是连续的曲线,没有间断点导函数连续是此函数的图像是光滑的,没有尖点
最佳答案:y=1/x在(负无穷,0)和(0,正无穷)才有定义,在0这一点不连续,所以在这两个区间分别有导数,不能因为y=1/x在0这一点不连续就说这个函数没有导数,导数的
最佳答案:一 导数1、导数的定义设函数y=f(x)在点x=x0及其附近有定义,当自变量x在x0处有改变量△x(△x可正可负),则函数y相应地有改变量△y=f(x0+△x)
最佳答案:可微必定连续且偏导数存在连续未必偏导数存在,偏导数存在也未必连续连续未必可微,偏导数存在也未必可微偏导数连续是可微的充分不必要条件
最佳答案:初等函数在其定义域内有一阶连续偏导数.
最佳答案:可导不一定连续,连续必定可导!
最佳答案:在一元的情况下,可导=可微->连续,可导一定连续,反之不一定.二元就不满足了 在二元的情况下,偏导数存在且连续,函数可微,函数连续;偏导数不存在,函数不可微,函
最佳答案:在一元的情况下,可导=可微->连续,可导一定连续,反之不一定.二元就不满足了 在二元的情况下,偏导数存在且连续,函数可微,函数连续;偏导数不存在,函数不可微,函
最佳答案:楼上不准确我所想的可能不一定全面,如果题目中出现了这个条件,我会想到(1)设一个函数为f(x),f'''(x)存在且连续.(2)可以用落必达法则3次(3)存在f
最佳答案:二元函数连续跟左右极限有半毛钱关系…二元函数连续是用重极限定义的,讨论偏导连续跟重极限有半毛钱关系.判断偏导存在用的是导数定义式多元函数在某点偏导数存在,啥结果
最佳答案:二元函数连续跟左右极限有半毛钱关系…二元函数连续是用重极限定义的,讨论偏导连续跟重极限有半毛钱关系.判断偏导存在用的是导数定义式多元函数在某点偏导数存在,啥结果
最佳答案:恩,的确从图像上基本上无法解释.我想你的原函数肯定是分段函数,在x不等于0时候,为XXX,在x=0时候,f=某个数使得函数连续.而且我相信你证明他在x=0可导不
最佳答案:这句话“一个函数在一个闭区间上连续导数”。我的看法是这样说容易让人误解,其实这句话的准确表达应该是:“一个函数在一个闭区间上存在连续的导函数”。这句话所表达意思
最佳答案:可微只能推出 在该点的偏导数存在...推不出连续...但是可偏导数连续可以推出可微
最佳答案:偏导数与可微之间的独立关系:偏导数连续推出可微 可微推不出偏导数连续~
最佳答案:x的1/2次方导数存在 但是不连续 类似地偏导数也一样 还有那个有连续偏导数不是可微的充要条件而是充分条件
最佳答案:连续,连续等价于△x→0时,△f'(x)→0,而极限△f'(x)=f'(x+△x)-f'(x)而由导函数定义得f'(x)=△x→0时的极限{[f(x+△x)-f
最佳答案:二元函数 f(x,y) 具有二阶连续偏导数指的是偏导数fx(x,y),fy(x,y)关于 (x,y) 是连续的.