知识问答
最佳答案:记住互化公式:x^2+y^2=p^2,x=pcosθ,y=psinθp=cos⊙+sin⊙,两边同时乘以p,得p^2=pcosθ+psinθ∴x^2+y^2=x
最佳答案:解题思路:由圆心为(2,π)且过极点可知半径r=2,利用直径所对的圆周角为直角和诱导公式即可得出.圆心为(2,π)且过极点的圆的极坐标方程为ρ=4cos(π-θ
最佳答案:在直角坐标系中,圆心为(1,√3)圆的方程为(X﹣1)²+(Y﹣√3) ²=1X²﹣2X﹢1﹢Y²﹣2√3Y﹢3=1X²﹢Y²﹣2X﹣2√3Y﹢3=0化为极坐标
最佳答案:p=1,p=-1也是可以的.标准方程是:x^2+y^2=1互化公式是{x=pcosa{y=psina消参后即得p^2=1一般都喜欢用 p=1而不用p=-1
最佳答案:极坐标系的解法见LS,对高中生来说不太好理解.直角坐标系的解法如下:两个坐标系的转化方程为 x=rcosθ,y=rsinθ 牢记这一点就可以.那么转成直角坐标系
最佳答案:A对应直角坐标系的(3/2,3√3/2)B对应(3√3/2,3/2)因此在直角坐标下的方程是(x-3/2)^2+(y-3√3/2)^2=9(1-√3)^2/2,
最佳答案:极坐标圆C:ρ=√2cos(θ+π/4)=√2(cosθcosπ/4-sinθsinπ/4),则ρ=cosθ-sinθ ①,因为极坐标(ρ,θ)与直角坐标(x,
最佳答案:极坐标中圆的参数方程为:x=acoscy=asincc为坐标和圆心所在直线与x轴的夹角,a为半径.于是这题可以解为,首先求出夹角的正切值,也就是tanc=p/a
最佳答案:解题思路:先将原极坐标方程ρ=4cosθ的两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即可.由题意可知圆的标准方程为:(x-2)2+y2=9,圆心
最佳答案:解题思路:如图所示,由于∠APO是⊙O的直径AO所对的圆周角,可得∠APO=[π/2].可得ρ=acos(π2−θ).如图所示,∵∠APO是⊙O的直径AO所对的
最佳答案:ρ^2=2ρsinAx^2+y^2=2yx^2+(y-1)^2=1过点切线为y=2极坐标方程为ρsinΘ=2根据圆C的直角坐标可知圆心为(0,-1)因为圆C与X
最佳答案:解题思路:(Ⅰ)先设圆上任一点坐标为(ρ,θ),由余弦定理得出关于ρ,θ的关系式,即为所求圆的极坐标方程;(Ⅱ)设Q(x,y)则P(2x,2y),根据P在圆上,
最佳答案:解题思路:在对应的直角坐标系中,求出圆的直角坐标方程,再依据x=ρcosθ,y=ρsinθ,把直角坐标方程化为极坐标方程.在对应的直角坐标系中,圆心的坐标为(c
最佳答案:解题思路:先在直角坐标系中算出圆的直角坐标方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,求出其极坐标方程即可.圆
最佳答案:解题思路:先在直角坐标系中算出圆的直角坐标方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,求出其极坐标方程即可.圆
最佳答案:解题思路:先在直角坐标系中算出圆的直角坐标方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,求出其极坐标方程即可.圆
最佳答案:P=12sin(θ- π/6)p^2=12psinθcosπ/6-12pcosθsinπ/6x^2+y^2=(6√3)y-6x(x+3)^2 + (y-3√3)
最佳答案:化为直角坐标方程圆C:ρ=2sinθ两边同时乘以ρ得ρ²=2ρsinθ代入ρ²=x²+y²、ρsinθ=y得x²+y²=2y即x²+(y-1)²=1直线θ=π/