知识问答
最佳答案:图不好画哟,语言描述一下,如何?齐次的三元线性方程组(含两个方程),对应几何上就是两个平面既然是齐次的,必有零解,几何上就是两个平面必过原点(0,0,0)因此,
最佳答案:齐次线性方程组中的"齐次"表示各个未知数的次数是相同的.对于右端不为0的常数项,可以认为未知数的次数为0,与其它项不同,所以不能称为齐次线性方程组.右端也可以不
最佳答案:显然(1,1,.,1)^T是AX=0的非零解,把r(A)=n-1代入公式解向量个数=未知量个数-系数矩阵的秩=n-(n-1)=1所以方程只有一个解向量,所以通解
最佳答案:对于非其次线性方程来说.任何一个解确定的解都可以作为他的特解,所以对于这个系数理论上取什么都可以,关键是要是一个确定的值.然后加上他的导出解(也就是自由变量齐次
最佳答案:对的.如果有无穷多组解,那么系数k取任意一个值都可以作为特解,因此不唯一.如果只有唯一解,特解肯定也只有一个了.
最佳答案:应该是“至少两个解向量”根据基础解系的概念,你得到的两个解向量都可以作为基础解系中的解向量,至于基础解系中还有没有其它解向量,还得根据方程组的构成与系数矩阵的秩
最佳答案:不行.这类题目必须先确定 r(A), 进而确定AX=0的基础解系所含向量的个数 n-r(A).已知三个特解, 只能知道 a1-a2,a1-a3 是 AX=0的解
最佳答案:每个n维向量都是方程组的解能说明A就是0矩阵所以它的秩r(A)=0比如(1,0..,0)^T是AX=0的解这个就可以得到第一列全是0,再取(0,1,0..,0)
最佳答案:问题一;向量组2的意思就是方程组的极大无关组,个数也就是秩;问题二;那个部分线性组就是把矩阵进行初等变换后得到的极大无关组,不能随便去掉一行,但得到的极大无关组