最佳答案:F(-x)=-F(x),两边取导数,有:F'(-x)(-x)'=-F'(x)-F'(-x)=-F'(x)F'(-x)=F'(x)即F'(x)是偶函数.
最佳答案:证明:∵f(x)是奇函数∴f(-x)=-f(x)分别对左、右两边求导,得〔f(-x)〕′=〔-f(x)〕′∴-f′(-x)=-f′(x)∴f′(-x)=f′(x
最佳答案:(1)因为f(x)在(-∞,+∞)上可导,且为奇函数即f(x)=-f(-x),则f(x)'=-f(-x)'=-f(-x)×(-1)=f(-x)即可证奇函数的导函
最佳答案:不是,g(x0) = lim[f(x0+dx)-f(x0)]/dx (1) 是右导数,也就是该点的右边两点斜率的极限值 即右导数.lim[f(x0)-f(x0-
最佳答案:偶函数可导,导数一定是奇函数.证明:f(-x)=f(x),则【f(-x)】’=f’(-x)*(-x)’= -1*f’(-x)=f’(x),所以f’(-x)= -
最佳答案:解题思路:证明f′(x)是(-a,a)内的偶函数即证f′(-x)=f′(x),而函数f(x)没有解析式,故想到运用导数的定义进行证明.证明:对任意x∈(−a,a
最佳答案:解题思路:由已知的极限可以计算f′(1);因为f(x)为偶函数,故f′(x)为奇函数,从而f′(-1)=-f′(1),故可以计算y=f(x)在点(-1,f(-1
最佳答案:解题思路:偶函数的图象关于y轴对称,x=0为极值点,f(x)是R上以5为周期,x=5也是极值点,极值点处导数为零∵f(x)是R上可导偶函数,∴f(x)的图象关于
最佳答案:解题思路:偶函数的图象关于y轴对称,x=0为极值点,f(x)是R上以5为周期,x=5也是极值点,极值点处导数为零∵f(x)是R上可导偶函数,∴f(x)的图象关于
最佳答案:函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)关于x=5对称因此导数为0选择B
最佳答案:y=f(x),f(-x)=f(x),f'(-x)=-f'(x)=f'(x),y'=f'(x)是奇函数,-f'(0)=f'(-0)=f'(0),f'(0)=0,且
最佳答案:f(x)为偶函数 则 f(x)在x=0的导数为 0f(x-3/2)=-f(x+5/2) 化为 f(x+5/2)=-f(x-3/2) 利用本式 对f(8)进行转化