知识问答
最佳答案:(1)直线x+2y-3=0的斜率=-1/2f'(x)=1/x-a f'(2)=1/2-a=2∴a=-3/2(2)f(x)=-x^2+2x-m△=4-4m>0
最佳答案:1)切线与直线y=x+1垂直,则直线斜率为-1.f'(x)=3x^2-2ax即f'(1)=3-2a=-1---> a=22)f(x)=3x^2-2ax=x(3x
最佳答案:f'(x)=2-a/xk=f'(1)=2-a=1,a=1f(x)=2x-lnxf'(x)=2-1/x=0,则x=1/2f(x)在(0,1/2)上减,在(1/2,
最佳答案:f'(x)=2-a/xk=f'(1)=2-a=1,a=1f(x)=2x-lnxf'(x)=2-1/x=0,则x=1/2f(x)在(0,1/2)上减,在(1/2,
最佳答案:切线相互垂直意味着两切线斜率相乘等于负一.设两点分别为x1 x2,对fx求导,令(f’x1)*(f‘x2)=-1整理分离a得到一个a方关于x1x2和x1+x2的
最佳答案:直线x-2y-3=0斜率为:1/2所以,切线斜率=-1÷ 1/2=-2所以,设切线方程:2x+y+b=0则:2*0-1+b=0b=1所以,切线方程为:2x+y+
最佳答案:1.对等式两边求导的2x+6yy'=2y+2xy'y'=(x-y)/(x-3y)(1)y'=0得x=y代入x^2+3y^2=2xy+48可得x=正负2*根号6(
最佳答案:已知函数f(x)=2/x+alnx-2(a>0)(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,球函数的y=f(x)单调区间;(2)
最佳答案:因为这里是存在区间,如果取等号的话,取等号的b=3,那么g(x)就没有递减区间,只有x=1为拐点。
最佳答案:比如说y=(lnx)的x次幂求导用两边取对数和用复合函数求导方法直接求的结果在微积分中一般讨论初等函数和非初等函数,超越函数只是初等函数的一个子集.幂
最佳答案:代入M坐标,可得a+b=4函数的导数∫(x)=3axˇ2+2bx.所给直线的斜率为-|╱9,那么曲线在M处的斜率k=9,就是说上面的导数在x=|时∫(1)=9.
最佳答案:解题思路:求出函数的导数,根据导数的几何意义,求出b,c的值,利用二次函数的性质即可得到结论.∵y=x2+bx+c,∴函数的导数为f′(x)=2x+b,∴抛物线
最佳答案:导函数为f1(x)=3ax^2+2bx m点处切线斜率应为9(题给直线斜率为-1/9) 故3a+2b=9 又过m点 a+b=4 两式得 a=1 b=3; 2)
最佳答案:设切点坐标为(a,f(a)),(b,f(b))f'(a)=(a-1)/(a+1)f'(b)=(b-1)/(b+1)f'(a)*f'(b)=(a-1)(b-1)/
最佳答案:f'(x)=3x^2+6ax+3b因为在x=2处取得极值,所以f'(2)=012+12a+3b=04a+b=-4又因为f(x)在x=1处切线与直线x-3y+5=
最佳答案:(1)a=1;(2)a的取值范围为(3)存在的图象恰有三个交点本题主要考查函数与方程的综合运用,主要涉及了方程的根与函数的零点间的转化.还考查了计算能力和综合运
最佳答案:f(x)=ax^3+bxf'(x)=3ax^2+bf'(1)=3a+b=94=a+ba=5/2,b=3/2