知识问答
最佳答案:⑴假如相关,存在不全0之k,k1,……,k(n-r),使kη*+k1ξ1+……+k(n-r)ξ(n-r)=0.k≠0,否则ξ1,ξ2,……,ξn-r相关,不可,
最佳答案:设y*是n阶常系数非齐次微分方程的一个特解,y1,y2,...,yn是对应的齐次方程的n个线性无关的特解,则.齐次方程的通解为Y=C1y1+C2y2+...+C
最佳答案:因为对于实矩阵A,expAt必为n阶方阵,而方程的实数域下的解为expAt的列向量线性组合,这个可以用矩阵函数来证明.对于A和矩阵运算f,若A的最小多项式的根为
最佳答案:齐次线性方程解集的秩等于将齐次线性方程组的系数矩阵化的矩阵的秩。你这个都有问题,可能问题不全,m*n矩阵A的秩为r,n元齐次线性方程组Ax=0的解集的秩为n-r
最佳答案:选择C,对(A|b)(b=(b1,b2,……bn)’)进行初等矩阵变换可得见图片(画得不好,但可以表示就行),其中最后一列b1',b2',……bn'为b=(b1
最佳答案:若r1,r2线性相关则r1,r2成倍数关系,既有r1=kr2而知道r1-r2为齐次方程的解,r1-r2=(1-k)r2所以有A(1-k)r2=(1-k)Ar2=
最佳答案:解题思路:讨论系数矩阵与增广矩阵的秩的关系,即可求解.齐次线性方程组Am×nx=0中m<n,则有R(A)≤m<n,所以,齐次线性方程组Am×nx=0必有非零解,
最佳答案:秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为
最佳答案:题目本身是有问题的,最后结论要改为Ax=b 的任一个解必可由 α,α+η1,…,α+ηt 线性表出,但表出系数的和要等于1,这是一个很老的证明题.它的由来是人们
最佳答案:(n1+2n2,kn1-4n2+kn3 ,n1+2n2-n3) = (n1,n2,n3)KK =1 k 12 -4 20 k -1|K| = 2k+4所以 k≠
最佳答案:1)令 a S1+b S2+ cS3+d n=0.若 d ≠ 0,则 n=-1/d S1 - 1/d S2 - 1/d S3An=A(-1/d S1 - 1/d
最佳答案:初学做这题目, 恐怕你看不懂呢因为 r(A)=n-1所以 Ax=0 的基础解系含 1 个解向量.且 |A|=0.又由 AA*=|A|E=0所以 A* 的列向量都
最佳答案:秩(A)=n-1,所以只有α,β是n元齐次线性方程组AX=b的两个不同的解Aα=b;Aβ=b;A(α-β)= 0又因为秩(A)=n-1,所以r(kernel(A
最佳答案:怎么没看到你这题目 晚了吧证明:(1)反证.假如s1,s2,s3,n线性相关因为 s1,s2,s3 线性无关所以 n可由s1,s2,s3线性表示所以n是齐次线性
最佳答案:设S1,S2,S3,n对应的系数分别为ki和p,i=1到3;ki*Si+p*n=0两边乘以A,则因为AX=b,可推出p=0,那么kiSi=0,又Si是齐次线性方
最佳答案:k1b1+k2b2+……+kn-rbn-r+kn-r+1a=0,a为非齐次方程的一个特解,上式两边乘以A,证得kn-r+1=0,又因为b1,b2,……,bn-r
栏目推荐: 高中乙酸方程式 写场景的作文 国庆的趣事作文 二元一次方程求图像 判若两人 硫化物的反应方程式 铝和硫酸反应 水手的英语翻译 质量分数40的溶液 坚持不懈是什么意思 高锰酸钾的溶液作用 混合物为什么是物质 华信 清华大学 10氢氧化钾溶液