最佳答案:线性方程组是一个增广矩阵啊,解方程的过程是进行矩阵的行变幻吧增广矩阵变成一个阶梯形矩阵也可以说线性方程组是多个未知数数乘上一个列向量的线性组合得到新的列向量
最佳答案:Ax = b 总有解则 Ax = εi 有解所以 εi 可由 A 的列向量组线性表示所以单位向量可由A的列向量组线性表示所以单位向量与A的列向量组等价反之,因为
最佳答案:秩与方程组的基础解的个数有关,向量组的秩指的是线性无关的向量的个数,最大的
最佳答案:"我知道非齐次线性方程组有无限多解的条件是R(A)=R(A增广)",错!R(A)=R(A增广)是非齐次线性方程组有解的条件,并不是有“无限多解”的条件!当|A|
最佳答案:︱λI-A︱=(λ-2)[(λ+1)(λ-3)+1*4]=(λ-2)(λ^2-2λ+4)=(λ-2)(λ-1)^2
最佳答案:没有什么本质可言.看你是从什么角度来看它,都是相对概念.数可以是向量(比如,全体实数其实就是其自身上的一维向量空间,这样看来,每个实数也可以叫做向量,尽管通常情
最佳答案:因为AB=0,所以r(A)+r(B)≤n,又因为B不为非零矩阵,所以r(B)≥1,所以r(A)≤n-1,当r(A)比n-1还小的话,此时意外着n-1阶子式都等于
最佳答案:1. 特征值 0 所对应的特征向量是α1=(-1 2 -1)^T α2=(0 -1 1)^T因为 Aα1 = 0 = 0*α1, α2也一样同时 矩阵A各行元素
最佳答案:由已知,k(1,1,1)^T 是A的属于特征值3的特征向量,k≠0k1a1+k2a2 是A的属于特征值0的特征向量,k1,k2是不全为0的任意常数
最佳答案:你的题出现重复的A,把(2)(3)问的A改为B(1)求A的特征值与特征向量.由于三阶矩阵A的各行元素之和均为3故Aα3=3α3,α3=(1,1,1)的转置所以3
最佳答案:①设AX=0,BX=0同解,解空间是V0=﹤X1,……Xp﹥,﹛X1,……Xp﹜是基础解系.设Vn=V0♁V1﹙♁是直和,V1是V0的正交补﹚则A的行向量组、B
最佳答案:对应特征值为0的向量是a1,a2对应特征值为3的向量是a3=(1,1,1)^t按照特征值、特征向量的公式,就能把矩阵A求出来.
最佳答案:X=[2.5 25 62.5 6.25 625 21.252.5 20 50 6.25 400 16.752.5 50/3 125/3 6.25 2500/9
最佳答案:k(B+C-2A)+A其中k为任意常数A=k1×齐次解+特解B+C=k2×齐次解+2×特解所以方程的齐次解等于B+C-2A=(k2-2k1)×齐次解所以通解=c
最佳答案:求特征值和特征向量时对应的方程组是齐次线性方程组只有当系数矩阵的行列式等于0时,方程组才有非零解此时的非零解即对应的特征值的特征向量
最佳答案:建议楼主去bbs.kaoyan.com那里基本上都是准备考研或关注考研的人,大家在里面交流学习方法,学习中遇到的问题,是个备考参考的好地方
最佳答案:因为你写的方程是数集而矩阵和向量都不属于数集,所以就不满足数集运算中的交换律