最佳答案:一切初等函数在其定义域内都是是连续的.这是真命题.你说的是正确的.我在读大学学习数学分析时老师反复强调的.函数在定义域内连续不一定处处可导,但是可导一定连续.
最佳答案:在起定义域内的任意一点其左极限等于右极限,那么它就是连续的.
最佳答案:1、A,比如y=根号(x²)=|x|,在x=0处不可导2、A ,f(x)可能不可导3、A ,比如g(x)=x²,x(x)=|t|,g(t)可导,但不能用那个求导
最佳答案:郭敦顒回答:一个不分段的连续的函数在其定义域R内可导,如y=x4它的导函数4x3在定义域内也是连续函数.问题是是否存在一个不分段的连续的函数在其定义域R内可导,
最佳答案:f(x)可导,导函数 f‘(x)在可导区间上有定义举了N遍的例子,F(x)=x^2sin(1/x) (x≠0);0 (x=0),导函数有二类间断所以不一定连续
最佳答案:连续是局部性质.对任何一个在定义域里的x,总存在x的足够小的临域,使临域不包含kπ+π/2,那么显然正切函数在这个临域里面是连续的.那就是说y=tanx 在任何
最佳答案:例如:y=x^2在定义域R上连续可导;y'=2x .
最佳答案:楼主你好,我手头的高等数学(同济第六版)P68页明确指出:"一切初等函数在其定义区间内都是连续的.所谓定义区间,就是包含在定义域内的区间."由此看来,定义区间和
最佳答案:连续型随机变量的分布函数是通过其密度函数积分得到的,因而是连续的(积分上限函数必连续).但不是处处可导的,如密度函数f(x) = 0,-inf.
最佳答案:第一问,g(x)=-x^3是单调函数且单调递减,所以g(x)在【a,b】上的最小值为-a^3=b/2,-b^3=a/2,解之可得a=b=0或者a=-(2)^(1
最佳答案:能提出这个问题说明亲有思考,但应该注意题目中的关键描述一切初等函数在其“定义区间”内都是连续的f(x)=tanx,在其“定义域”负无穷到正无穷内存在无穷间断点关
最佳答案:1.证明f(x)=(x+4)的1/3次方 在其定义域连续.证明:其定义域为R,分x0= - 4及x0≠ - 4两种情况证明:①x0= - 4,应该证明lim -
最佳答案:定义区域包含定义域,定义域只能为一维,比如[1,2]表示长度为1的线段,而定义区域可以是多维的,比如说圆形区域(二维)、球域(三维)等