最佳答案:可以:齐次:0X=0,任意X都是解,非齐次0X=B,(B≠0)无解
最佳答案:矩阵的秩不超过其行数与列数
最佳答案:非齐次线性方程组的根是否存在跟它的系数矩阵的秩是某与增广矩阵的秩相等。r(A)=r,当r=m时,证明系数矩阵行满秩,行满秩的情况下,只改变矩阵的列数,矩阵的秩是
最佳答案:这当然是错误的,非齐次线性方程组如果有解的话,一定要满足系数矩阵的秩等于增广矩阵的秩即可,而即使系数矩阵|A|=0,也有可能系数矩阵的秩小于增广矩阵的秩,在这种
最佳答案:Ax=0的基础解系应该有一个(n-r(A)=1);它的解应为Ax=b的两个特解相减Ax=b的解应为Ax=0的解加上Ax=b 的一个特解;所以选C
最佳答案:齐次线性方程Ax=0将B按列分块:B=(B1 B2 ...Bn)则Bi都是Ax=0的解,即ABi=0所以A(B1 B2 .Bn)=0从而 AB=0
最佳答案:解题思路:充分运用“r(A)=r(A b)=n时,Ax=b有唯一解”和“r(A)=r(A b)<n时,Ax=b有无穷多解”,以及““r(A)<r(A b)时,A
最佳答案:矩阵之间的等价关系具有以下性质1 反身性 A~A2 对称性 若A~B,则B~B3 传递性 若A~B,B~C,则A~C.对任何方阵A,A~E(行变换)的充分必要条
最佳答案:解非齐次线性方程组要先将该方程组当成齐次线性方程组(将等号右边数值全变0)来解,解出通解.再根据等号右边的值来取一组特解,最后解为:通解+特解.把系数矩阵化成三
最佳答案:因为矩阵A的秩为1所以AX=0的基础解系的基数为2又X1,X2,X3是三个解向量所以X1-X2=列向量(2,-2,3)和X1-X3=(0,0,2)是AX=0的基
最佳答案:因为矩阵A的秩为n-1,所以齐次线性方程组AX=0的基础解系含有的向量数目为1,a1,a2为Ax=b的两个解,所以a1-a2为AX=0的一个解,若a1-a2非零
最佳答案:因为四元非齐次线性方程组 AX=b 的系数矩阵的秩为3所以AX=0 的基础解系含 4-r(A) = 1 个解向量而 2η1 - (η2+η3) = (4,6,8
最佳答案:设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且η1=(2,3,4,5)T(此向量是列向量,后同);η2+2η3=(3,4,5
最佳答案:解: 因为r(A)=3, 所以AX=0的基础解系含 4-r(A)=1个解向量所以 2a1-(a2+a3)=(2,3,4,5)^T≠0 是AX=0的基础解系所以方
最佳答案:设A=(a1,a2,...,an),B=(a1,a2,...,an,b)因为A,B的秩相等,所以向量组a1,a2,...,an与向量组a1,a2,...,an,
最佳答案:设A=(a1,a2,...,an),B=(a1,a2,...,an,b)因为A,B的秩相等,所以向量组a1,a2,...,an与向量组a1,a2,...,an,
最佳答案:用Cramer法则.非齐次线性方程组有唯一解的充要条件是系数矩阵的行列式不为0,换句话说就是你说的系数矩阵线性无关.而有解就说明等号右端的向量可以由系数矩阵的列
最佳答案:只有化为最简矩阵,才能直接得出方程组的解.化简时只能进行行变换,不能进行列变换,不能从左到右.只能进行行的初等变化.就可以化为最简矩阵了.