最佳答案:解题思路:直接根据非齐次线性方程组AX=b与其导出组AX=0的解的关系来选择答案.设AX=0是n元线性方程组①选项A.由AX=0只有零解,知r(A)=n,但不能
最佳答案:你在说清楚点K1N1是K,1,N,1相乘是么?
最佳答案:⑴假如相关,存在不全0之k,k1,……,k(n-r),使kη*+k1ξ1+……+k(n-r)ξ(n-r)=0.k≠0,否则ξ1,ξ2,……,ξn-r相关,不可,
最佳答案:选D因为β是对应的齐次方程组AX=0的解所以非齐次线性方程组AX=B的解可表示为α=kβ+s其中s为非齐次线性方程组AX=B的特解令α1=mβ+s,α2=nβ+
最佳答案:解题思路:可以利用齐次方程组有解的判断定理,也可以利用排除法解答.Ax=b有无穷多个解⇒R(A)=R(B)<n⇒R(A)<n⇒Ax=0有非零解.对(A):如x1
最佳答案:反证法,如果向量组α1,α2.……αn-r,β线性相关,则存在不全为零的数k1,k2,.……,kn-r,k使得k1*a1+k2*a2+.……+kn-r*αn-r
最佳答案:解题思路:(1)写出向量组的线性组合,然后利用η1与η2是非齐次线性方程组Ax=b的两个不同解,证明系数为零即可;(2)由r(A)=n-1,得到齐次线性方程组A
最佳答案:秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为
最佳答案:证明:(1) 显然 x0,x0+a1,x0+a2...x0+an-r 都是AX=b的解.设 k0X0+k1(X0+a1)+k2(x0+a2)+...+kn-r(
最佳答案:A(c1a1+c2a2+.ctat) =c1Aa1+c2Aa2+.ctAat=c1b+c2b+...+ctb= (c1+...+ct)b = b所以 c1+..
最佳答案:显然,η∗ ,ξ1,··· ,ξn−r 与向量组 η∗,η∗ + ξ1,··· ,η∗ + ξn−r能相互线性表示,所以相互等价
最佳答案:Aa=B,Ab=0 (a:alpha; b:beta)=> A(a/2)=B/2,A(b/2)=0两式相加=> A(a/2+b/2)=B/2所以a/2+b/2是
最佳答案:问题1:你的这个想法对于线性齐次方程组是正确的,但是对于非齐次方程组就不对了.我举个例子,假设A,B,C都是方程组Dx=b的不同的解,若是按照你的理解,那么D(
最佳答案:1)令 a S1+b S2+ cS3+d n=0.若 d ≠ 0,则 n=-1/d S1 - 1/d S2 - 1/d S3An=A(-1/d S1 - 1/d
最佳答案:设实数m,n,p满足m(a1+e)+n(a2+e)+p(a3+e)=0,(1)则A[m(a1+e)+n(a2+e)+p(a3+e)]=m(Aa1+Ae)+n(A
最佳答案:怎么没看到你这题目 晚了吧证明:(1)反证.假如s1,s2,s3,n线性相关因为 s1,s2,s3 线性无关所以 n可由s1,s2,s3线性表示所以n是齐次线性
最佳答案:设S1,S2,S3,n对应的系数分别为ki和p,i=1到3;ki*Si+p*n=0两边乘以A,则因为AX=b,可推出p=0,那么kiSi=0,又Si是齐次线性方