最佳答案:因为矩阵A的秩为1所以AX=0的基础解系的基数为2又X1,X2,X3是三个解向量所以X1-X2=列向量(2,-2,3)和X1-X3=(0,0,2)是AX=0的基
最佳答案:解题思路:充分运用“r(A)=r(A b)=n时,Ax=b有唯一解”和“r(A)=r(A b)<n时,Ax=b有无穷多解”,以及““r(A)<r(A b)时,A
最佳答案:矩阵之间的等价关系具有以下性质1 反身性 A~A2 对称性 若A~B,则B~B3 传递性 若A~B,B~C,则A~C.对任何方阵A,A~E(行变换)的充分必要条
最佳答案:因为矩阵A的秩为n-1,所以齐次线性方程组AX=0的基础解系含有的向量数目为1,a1,a2为Ax=b的两个解,所以a1-a2为AX=0的一个解,若a1-a2非零
最佳答案:因为 r(A) = 3所以 AX=0 的基础解系含 4-3=1 个向量所以 η2+η3 - 2η1 = (0,1,2,3)^T 是 AX=0 的基础解系所以 A
最佳答案:因为四元非齐次线性方程组 AX=b 的系数矩阵的秩为3所以AX=0 的基础解系含 4-r(A) = 1 个解向量而 2η1 - (η2+η3) = (4,6,8
最佳答案:设四元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的三个解向量,且η1=(2,3,4,5)T(此向量是列向量,后同);η2+2η3=(3,4,5
最佳答案:解题思路:由系数矩阵的秩可推知解向量组的秩,进而得到最大线性无关解向量.8元非齐次线性方程组的系数矩阵A的秩等于3,所以,非齐次线性方程组的解向量组的秩=8-3
最佳答案:解向量个数为4-R(A)=1个.k(η1-η2),是通解,要加上一个特解,所以无论加η1,η2都是一样的.反过来理解,换成η2,无外乎是K值变化
最佳答案:设A=(a1,a2,...,an),B=(a1,a2,...,an,b)因为A,B的秩相等,所以向量组a1,a2,...,an与向量组a1,a2,...,an,
最佳答案:设A=(a1,a2,...,an),B=(a1,a2,...,an,b)因为A,B的秩相等,所以向量组a1,a2,...,an与向量组a1,a2,...,an,
最佳答案:不是特指也可以是非齐性次方程组.非齐次方程组也成立,不过应该考虑增广矩阵.
最佳答案:解: 因为r(A)=3, 所以AX=0的基础解系含 4-r(A)=1个解向量所以 2a1-(a2+a3)=(2,3,4,5)^T≠0 是AX=0的基础解系所以方
最佳答案:A,B秩相等,说明b可由A的列向量线性表出,所以B与A等价,他们可以相互表出.
最佳答案:由已知,方程组的导出组的基础解系含 5-3=2 个向量所以该方程组的通解为x1+c1(x1-x2)+c2(x1-x3)=(4,3,2,0,1)T + c1(2,
最佳答案:由已知,方程组的导出组的基础解系含 5-3=2 个向量所以该方程组的通解为x1+c1(x1-x2)+c2(x1-x3)=(4,3,2,0,1)T + c1(2,
最佳答案:k(B+C-2A)+A其中k为任意常数A=k1×齐次解+特解B+C=k2×齐次解+2×特解所以方程的齐次解等于B+C-2A=(k2-2k1)×齐次解所以通解=c