知识问答
最佳答案:1、对应的齐次线性方程的特征方程是r^2-3r+2=0,根是1.2.所以齐次线性方程的通解是y=C1*e^x+C2*e^(2x).因为λ=0不是特征方程的根,所
最佳答案:二阶线性齐次方程的一般形式为:y''+a1y'+a2y=0,其中a1,a2为实常数.我们知道指数函数e^(ax)求导后仍为指数函数.利用这个性质,可适当的选择常
最佳答案:化成y''+py'+qy=0求特征方程 λ^2+pλ+q=0 的根为特征根根据特征根的形式通解分为三种.1.有两个不等实特征根λ1,λ2:y=C1*e^(λ1*
最佳答案:方程:d^2(y)/d(x^2)+a*dy/dx+b*y=0解方程:z^2+a*z+b=0得出z1,z2若两者是重根,则得到基本解组,z1*exp(z1*t),
最佳答案:特征方程为r²+r=0,得r=0,-1齐次方程的解y1=C1+C2e^(-x)设特解为y*=(ax+b)cos2x+(cx+d)sin2x则y*'=acos2x
最佳答案:不用特别的去分,只要把握住,右侧函数是多项式乘指数的时候,看指数x的系数(比如说是t)是不是特征根就可以了,应该知道t不是特征根,设的时候k=0,t是特征根中的
最佳答案:令y' = v,y'' = v'y'' - 1/x · y' = xe^xv' - v/x = xe^x,e^∫ - 1/x dx = e^- ln|x| =
最佳答案:用幂级数法:设y=c0+c1x+c2x^2+...+cnx^n+...则y'=c1+2c2x+3c3x^2+...+ncnx^(n-1)y"=2c2+6c3x+
最佳答案:楼主...其实你已经算出来了 你写的是非齐次的通解...x(6sin(4x)-4cos(4x))就是非齐次的特解 particular solution 二阶常
最佳答案:你这个题目应该是e的2λx的次方吧,如果像你这样说的话那答案就是[(C1+C2x)e^-1]+e^2λ我估计你打错了,少了一个x这个采用微分算子法比较方便y"+
最佳答案:新年好!Happy Chinese New Year !楼主的问题是:二阶常系数非齐次线性微分方程的题目怎么解?答:1、如楼上网友所说,确确实实,大学教材有。
最佳答案:设u=Ca+Db为齐次方程通解,a,b为特解,C,D为常数.现设C,D为待定函数.对u求导数.令C'a+D'b=0 (1).对u求二次导数并带入非齐次方程得:C
最佳答案:特征方程为t^2-4t+3=0(t-1)(t-3)=0t=1,3因此齐次方程通解为c1e^x+c2e^3x设特解为y*=ax+b,代入原方程得:-4a+3ax+
最佳答案:∵齐次方程y"-3y'+2y=0的特征方程是r^2-3r+2=0,则r1=1,r2=2∴此齐次方程的通解是y=C1e^x+C2e^(2x) (C1,C2是常数)
最佳答案:由特解,r=1是二阶常系数齐次线性微分方程的特征方程的二重根,所以特征方程是r^2-2r+1=0,所以微分方程是y''-2y'+y=0.