知识问答
最佳答案:(1)可变成本部分5Q3-4Q2+3Q不变成本部分50(2)TVC(Q)=5Q3-4Q2+3QAC(Q)=STC(Q)/Q = 5Q2-4Q+3+ 50/QAV
最佳答案:可变成本部分是Q^3-10Q^2+15Q,不变成本是66TVC(Q)=Q^3-10Q^2+15Q,AC(Q)=Q^2-10^Q+15+66/Q,AVC(Q)=6
最佳答案:TVC=Q^3-8Q^2+10QAC=TC/Q=Q^2-8Q+10+50/QAVC=TVC/Q=Q^2-8Q+10AFC=FC/Q=50/QMC=dTC/dQ=
最佳答案:【2】(1)TC(Q)=Q^3-10Q^2+17Q+66TFC=TC(0)=66,TVC=TC-TFC=Q^3-10Q^2+17Q(2)TVC(Q)=Q^3-1
最佳答案:(1)完全竞争短期均衡时有MC=P,即MC=0.3Q(平方)+4Q+15=55得Q=利润=PQ-STC=……(2)厂商停产的条件是P小于平均可变成本SFC=ST
最佳答案:1、要求AVC最小时的产量,因为价格不变,所以是求SVC最小时的产量,因为SFC不变所以是求STC最小时的产量通过对STC(Q)求导,并令STC’(Q)=3Q²
最佳答案:AC(Q)=TC(Q)/Q=0.04Q2-0.8Q+10+5/QAC(Q)=AVC(Q)+AFC(Q)则AVC(Q)=0.04Q2-0.8Q2+10AFC(Q)
最佳答案:好的反需求函数为P=8-0.4Q .求该厂商实现利润最大化时的产量、法1;max π=P*Q-C (收益减成本)max π=(8-0.4Q)*Q - (0.6Q
最佳答案:先列出平均成本函数,对其求一阶导数,得两解,分别代入二阶导数,若二阶值大于零,为极小值点.若两解代入二阶导均大于零.则将两解分别代入原函数,得最小值,及得题解.
最佳答案:因为总成本=固定成本+可变成本,固定成本=150;所以可变成本=5Q-3Q^2+Q^3平均可变成本=Q-3Q+Q^2Q=20时,平均可变成本为360Q=10时的
最佳答案:平均可变成本AVC=(0.04Q^3-0.8Q^2+10Q)/Q=0.04Q^2-0.8Q+10边际成本MC=STC'=0.12Q^2-1.6Q+10
最佳答案:AVC=STC/Q=0.04Q^2-0.08Q+10是平均可变成本函数,呈现U型,有一个最小值.数学问题求极值,求导数令其等于零:0.08Q-0.08=0,得Q
最佳答案:平均可变成本AVC=STC/Q=0.04Q^2-0.8Q+10+5/QQ为正整数,二次函数0.04Q^2-0.8Q+10的最小值出现在Q=10处,而Q>5后5/
最佳答案:平均可变成本AVC=STC/Q=0.04Q^2-0.8Q+10+5/QQ为正整数,二次函数0.04Q^2-0.8Q+10的最小值出现在Q=10处,而Q>5后5/
最佳答案:我只能给你做两道题,因为这么多题目太花时间了,其余的你自己做吧.这些题目都是非常简单的题目,自己练练也好.有什么难题可以加我QQ:77970217,但我不希望你
最佳答案:(1)MC=dTC(Q)/dQ,TC=∫MCdQ=Q^3-6Q^2+10Q+CTC(5)=125-150+50+C=55C=30TC=Q^3-6Q^2+10Q+
最佳答案:平均总成本TAC(q)=C(q)/q=(100+2q+q2)/q=100/q+2+q可变成本VC(q)=2q+q2则平均可变成本AVC(q)=VC(q)/q=(
最佳答案:可变成本为TVC=0.04Q 3 -0.8Q2 +10Q不变成本为TFC=5平均可变成本AVC=TVC/Q=0.04Q 2 -0.8Q +10=0.04(Q-1
最佳答案:(1)因为STC=0.1Q3-2Q2+15Q+10 所以SMC= =0.3Q3-4Q+15 根据完全竞争厂商实现利润最大化原则P=SMC,且已知P=55,于是有
最佳答案:对于厂商来说短期供给函数表达的意思是每给定一个价格,厂商所选择的最优生产产量.厂商边际成本曲线描述的意思是每给定一个产量对应边际成本的一一对应函数关系.厂商选择