知识问答
最佳答案:建议你把幂函数的图象画一下.通常研究幂函数的增减都在第一象限内.当a大于0,函数在第一象限内是增函数.当a等于0,y等于x的0次方,即y=1,它在第一象限是常函
最佳答案:函数F(X)=X^2+1 X属于(0,+∞)对于任意自变量x1、x2属于(0,+∞),当,x1>x2时,有F(x1)-F(x2)=(X1^2+1)-(X2^2+
最佳答案:f(x)=1-2/x 因为-2/x在(-∞,0 )上是增函数 所以函数f(x)=x-2 除以x 在(-∞,0 )上是增函数.
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f