知识问答
最佳答案:必要非充分 ,就是说由“f(x)在x0 处连续”可以推出“函数y=f(x) 在点x=x0 处有定义”,这个应该不需要解释了吧.但是“函数y=f(x) 在点x=x
最佳答案:基本初等函数在它们的定义域内都是连续的.由基本初等函数经过有限次的四则运算和有限次的函数复合所构成并可用一个解析式表示的函数,称为初等函数.一切初等函数在其定义
最佳答案:郭敦顒回答:一个不分段的连续的函数在其定义域R内可导,如y=x4它的导函数4x3在定义域内也是连续函数.问题是是否存在一个不分段的连续的函数在其定义域R内可导,
最佳答案:其实也是投影.你说的“一个函数值比如说是h,它可能对应的x轴上的点有好几个,比如x1,x2,x0等等”,其实可以把函数分段,在x0的一个小领域内,函数值h只会对
最佳答案:因为是初等函数,就是经常使用的一些函数如幂函数、三角函数、指对数函数等,都存在连续的导函数.
最佳答案:对于一点,不仅是左右连续,而是在Z上从各方向趋于一点都连续.对于f,要求u,v偏导连续,而且u,v满足C.-R.条件.
最佳答案:1、A,比如y=根号(x²)=|x|,在x=0处不可导2、A ,f(x)可能不可导3、A ,比如g(x)=x²,x(x)=|t|,g(t)可导,但不能用那个求导
最佳答案:一切初等函数在其定义域内都是是连续的.这是真命题.你说的是正确的.我在读大学学习数学分析时老师反复强调的.函数在定义域内连续不一定处处可导,但是可导一定连续.
最佳答案:一般地,多数情况下.若能判断f(x)是初等函数,且定义域为R,则f(x)在R上连续.因为所有初等函数在其定义域上连续.常值函数就是这种情况.极限法,少数情况下.
最佳答案:有 狄利克雷函数D(x) = 1(x为有理数),0(x为无理数)狄利克雷函数的性质1.定义在整个数轴上.2.无法画出图像.3.以任何正有理数为其周期(从而无最小
栏目推荐: 5万三年定期多少利息 什么物质中含氧气 化学方程式加名称 最小三位数是多少 化学方程式怎样算 氨气的稀溶液 正规英语翻译 清平乐村居辛弃疾 可以制取二氧化碳的 讨厌的近义词 氯气和钠方程式离子 物质能燃烧的有机物