最佳答案:不存在因为极限无穷,所以该函数数在该点不连续因为可导的函数一定连续.不连续的函数一定不可导所以导数不存在
最佳答案:这是由区别的,某一点处的极限为t,是指这一点的函数值趋近于t;而这一点的导数为t,则表示这一点的切线的斜率=t.
最佳答案:不是一回事,比如 f=x^2sin1/x,当x=0时候补充定义为0.这个函数处处可求导,并且零点的导数为零,但是导函数在零点处的极限不存在.
最佳答案:这个题目其实例子很好找啊比如x≤0时,y=x^2 ,y'=2xx>0时,y=2x ,y'=2我们可以看到这个函数在x=0处是连续,在x=0处导函数的左极限为0,
最佳答案:用文字给你描述一下,函数在该点可导则在该点的左右导数存在、相等且等于在该点的导数值.不妨设这个极值点为极小值点,则左导数依定义可知是小于等于0的(极限的保号性)
最佳答案:这两个概念是不同的,函数f(x)在x0点的左导数f‘-(x0)是用导数定义求得的,即x趋于x0-时lim[f(x)-f(x0)]/(x-x0),而在x0点导函数
最佳答案:一元可微函数一点的导数表示该点割线斜率的极限,通常理解为切线的斜率就可以.连续函数在某点的极限为该点的函数值,对一般函数不成立.