根据余弦定理
a^2 = b^2 + c^2 - 2bc *cosA
则
b^2+c^2-a^2 = 2bc*cosA
又三角形面积同时为
S = (1/2)*bc*sinA
所以
1/4√3(b^2+c^2-a^2) = 1/4√3 * 2bc*cosA = (1/2)*bc*sinA
1/√3 * cosA = sinA
tanA = 1/√3
A = 30 度
a + b = 10
a^2 + 2ab + b^2 = 100
c=6
c^2 = a^2 + b^2 - 2ab*cosC
36 = 100 - 2ab - 2ab*cosC
2ab + 2ab * cos30 = 64
ab + ab* 根号3 /2 = 32
ab = 64/(2+ 根号3)
面积 = (1/2)*ab * sinC = ab/4 = 16 /(2 + 根号3)= 16*(2 -√3)