在△ABC中,猜想T=sinA+sinB+sinC的最大值,并证明.
4个回答

∵sinA+sinB+sinC=2sin[(A+B)/2]cos[(A-B)/2]+2sin(C/2)cos(C/2)

=2sin[(180°-C)/2]cos[(A-B)/2]+2sin(C/2)cos(C/2)

=2sin(90°-C/2)cos[(A-B)/2]+2sin[(180°-A-B)/2]cos(C/2)

=2cos(C/2)cos[(A-B)/2]+2sin[90°-(A+B)/2]cos(C/2)

=2cos(C/2){cos[(A-B)/2]+cos[(A+B)/2]}

=4cos(C/2)cos{[(A-B)/2+(A+B)/2]/2}cos{[(A-B)/2+(A+B)/2]/2}

=4cos(C/2)cos(A/2)cos(B/2)

显然,cos(C/2)、cos(A/2)、cos(B/2)都是正数,

∴cos(C/2)cos(A/2)cos(B/2)

≤{[cos(C/2)]^3+[cos(A/2)]^3+[cos(C/2)]^3}/3

当cos(C/2)=cos(A/2)=cos(B/2)时,cos(C/2)cos(A/2)cos(B/2)有最大值.

由cos(C/2)=cos(A/2)=cos(B/2)得:A=B=C=60°,

∴此时{[cos(C/2)]^3+[cos(A/2)]^3+[cos(C/2)]^3}/3

=(cos30°)^3=(√3/2)^2=3√3/8.

∴cos(C/2)cos(A/2)cos(B/2)的最大值是3√3/8.

得:4cos(C/2)cos(A/2)cos(B/2)的最大值是3√3/2.

即:sinA+sinB+sinC的最大值是3√3/2.