ab/(a+b)=2
bc/(b+c)=3
ac/(a+c)=5
取倒数得:
(a+b)/ab=1/2
(b+c)/bc=1/3
(a+c)/ac=1/5
即:
1/a+1/b=1/2 (1)
1/b+1/c=1/3 (2)
1/a+1/c=1/5 (3)
(1)加(2)加(3)式得:
(1/a+1/b+1/c)=[(1/2)+(1/3)+(1/5)]/2=31/60
再分别与(1)、(2)、(3)相减可得:
1/a=(1/a+1/b+1/c)-(1/b+1/c)=31/60-1/3=11/60
1/b=(1/a+1/b+1/c)-(1/a+1/c)=31/60-1/5=19/60
1/c=(1/a+1/b+1/c)-(1/a+1/b)=31/60-1/2=1/60
所以:
a=60/11;
b=60/19;
c=60.