ab/(a+b)=2 bc/(b+c)=3 ac/(a+c)=5 a=?b=?c=?
2个回答

ab/(a+b)=2

bc/(b+c)=3

ac/(a+c)=5

取倒数得:

(a+b)/ab=1/2

(b+c)/bc=1/3

(a+c)/ac=1/5

即:

1/a+1/b=1/2 (1)

1/b+1/c=1/3 (2)

1/a+1/c=1/5 (3)

(1)加(2)加(3)式得:

(1/a+1/b+1/c)=[(1/2)+(1/3)+(1/5)]/2=31/60

再分别与(1)、(2)、(3)相减可得:

1/a=(1/a+1/b+1/c)-(1/b+1/c)=31/60-1/3=11/60

1/b=(1/a+1/b+1/c)-(1/a+1/c)=31/60-1/5=19/60

1/c=(1/a+1/b+1/c)-(1/a+1/b)=31/60-1/2=1/60

所以:

a=60/11;

b=60/19;

c=60.