椭圆x^2+2y^2=2,点P是直线x+y=2上的(不在x轴上)的任意一点,F1,F2分别为椭圆的左右焦点,O为坐标原点
1个回答

设PF1:y=k1(x+1),PF2=k2(x-1)

分别与椭圆联立方程

→(1+2k1²)x²+4k1²x+2k1²-2=0,(所以设A(x1,y1),B(x2,y2))

→x1+x2=-4k1²/(1+2k1²)①,x1x2=(2k1²-2)/(1+2k1²)②

同理,设C(x3,y3),D(x4,y4)

→(1+2k2²)x²-4k2²x+2k2²-2=0

→x3+x4=4k2²/(1+2k2²)③,x3x4=(2k2²-2)/(1+2k2²)④

根据kOA+kOB+kOC+kOD=0

→y1/x1+y2/x2+y3/x3+y4/x4=0

根据y=k1(x+1)→y1=k1(x1+1),y2~

根据y=k2(x-1)→y3=k2(x3-1),y4~

代入进行化简

→k1(2x1x2+x1+x2)/(x1x2)+k2[2x3x4-(x3+x4)]/x3x4=0

由①②③④→-2k1/(k1²-1)-2k2/(k2²-1)=0⑤

设P(n,2-n)→k1=(2-n-0)/(n+1)=(2-n)/(n+1),k2=(2-n)/(n-1)

代⑤→k1²k2+k1k2²=k1+k2

→k1k2(k2+k1)=k1+k2

→k1k2=1或者k1k2=0或者(k1+k2)=0

均成立

→n=5/4,n=2,n=0均可

→P(5/4,3/4),P(2,0),P(0,2)