一道双曲线的题目 它的答案是(1) (0,+oo)                  (2) [-2√2,0)U(0,2
1个回答

向量PS=λ向量SQ,则△PF1Q的外心S必在直线l上,也即P、Q、S三点共线.根据外心定义,有F1S=QS=PS,故点S为PQ中点,且有PF1⊥QF1,也即△PF1Q为RT△.

c=√(a^2+b^2)

直线l的方程为y=k1*(x-c),代入双曲线方程得

(b^2-k1^2*a^2)x^2+2k1^2*a^2*cx-a^2*(k1^2*c^2+b^2)=0

设P(x1,y1),Q(x2,y2),则有

x1+x2=2k1^2*a^2*c/(k1^2*a^2-b^2) ①

x1x2=a^2*(k1^2*c^2+b^2)/(k1^2*a^2-b^2 ) ②

K2=(y1+y2)/(x1+x2)=[k1*(x1+x2)-2k1*c]/(x1+x2)=k1-2k1*c/(x1+x2)

=k1-2k1*c/[2k1^2*a^2*c/(k1^2*a^2-b^2)]=k1-[k1-b^2/(k1*a^2)]=b^2/(k1*a^2)]

于是k1k2=b^2/a^2>0

F1(-c,0),P(x1,y1),Q(x2,y2),由F1P^2+F1Q^2=PQ^2得

(x1+c)^2+y1^2+(x2+c)^2+y2^2=(x2-x1)^2+(y2-y1)^2

也即

c(x1+x2)+c^2+x1x2+y1y2=0

c(x1+x2)+c^2+x1x2+k1*(x1-c)*k1*(x2-c)=0

c(1-k1^2)(x1+x2)+(1+k1^2)x1x2+(1+k1^2)c^2=0

代入①、②得

2(1-k1^2)*k1^2*a^2c^2+(1+k1^2)*a^2*(k1^2*c^2+b^2)+(1+k1^2)*c^2*(k1^2*a^2-b^2)=0

4k1^2a^2c^2+b^2(a^2-c^2)+k1^2b^2(a^2-c^2)=0

4k1^2a^4+4k1^2a^2b^2-(1+k1^2)b^4=0

将k1=b^2/(k2*a^2)代入上式化简得

k2^2=(4a^4+4a^2b^2-b^4)/a^4=4+4(b/a)^2-(b/a)^4=-[(b/a)^2-2]^2+8≤8

前已证k1k2=b^2/a^2>0,故k2≠0.

于是k2的范围为[-2√2,0)∪(0,2√2].