设a,b,c,为三角形的三边,求证:a(b-c)2+b(c-a)2+c(a-b)2+4abc>a3+b3+c3
1个回答

a(b-c)^2+b(c-a)^2+c(a-b)^2+4abc-(a^3+b^3+c^3)

=a[(b-c)^2-a^2]+b[(c-a)^2-b^2]+c[(a-b)^2+4ab-c^2]

=-a(a+c-b)(a+b-c)-b(a+b-c)(b+c-a)+c[(a+b)^2-c^2]

=-a(a+c-b)(a+b-c)-b(a+b-c)(b+c-a)+c(a+b+c)(a+b-c)

=(a+b-c)[-a(a+c-b)-b(b+c-a)+c(a+b+c)]

=(a+b-c)(-a^2-b^2+2ab+c^2)

=(a+b-c)[c^2-(a-b)^2]

=(a+b-c)(a+c-b)(b+c-a)

a,b,c是三角形的边长

所以a+b-c>0,a+c-b>0,b+c-a>0

a(b-c)^2+b(c-a)^2+c(a-b)^2+4abc-(a^3+b^3+c^3) >0

所以a(b-c)^2+b(c-a)^2+c(a-b)^2+4abc>a^3+b^3+c^3