已知数列{an}是等比数列,其中a3=1,且a4,a5+1,a6成等差数列,数列{an/bn}的前n项和Sn=(n-1)
1个回答

(1)

a4、a5+1、a6成等差数列,则2(a5+1)=a4+a6

a4=a3q a5=a3q² a6=a3q³ a3=1代入,整理,得

q³-2q²+q-2=0

q²(q-2)+(q-2)=0

(q²+1)(q-2)=0

q²+1恒为正,要等式成立,只有q=2

a1=a3/q²=1/2²=1/4

an=(1/4)×2^(n-1)=2^(n-3)

数列{an}的通项公式为an=2^(n-3).

S1=(1-1)×2^(1-2) +1=1 a1/b1=1 b1=a1=1/4

an/bn=Sn-Sn-1=(n-1)×2^(n-2)+1-(n-2)×2^(n-3)-1=n×2^(n-3)

bn=an/[n×2^(n-3)]=2^(n-3)/[n×2^(n-3)]=1/n

n=1时,b1=1/4,不满足.

数列{bn}的通项公式为

bn=1/4 n=1

1/n n≥2

[T3(n+3)-T(n+1)]-(T3n-Tn)

=[1/4+1/2+1/3+...+1/(3n)+1/(3n+1)+1/(3n+2)+1/(3n+3)]-[1/4+1/2+1/3+...+1/n+1/(n+1)]

-[1/4+1/2+1/3+...+1/(3n)]+(1+1/2+1/3+...+1/n)

=1/(3n+1)+1/(3n+2)+1/(3n+3)-1/(n+1)

>1/(3n+3)+1/(3n+3)+1/(3n+3)-1/(n+1)

=1/(n+1)-1/(n+1)=0

T3(n+3)-T(n+1)>T3n-Tn

即随n增大,T3n-Tn单调递增,当n=1时,T3n-Tn取得最小值.

T3-T1=(1/4+1/2+1/3)-(1/4)=1/2+1/3=5/6

要不等式T3n-Tn≥t对于一切正整数n恒成立,只要t≤5/6.