图呢?
①成立
在AB上取一点M,使AM=EC,连接ME.
∴BM=BE.∴∠BME=45°.∴∠AME=135°.
∵CF是外角平分线,
∴∠DCF=45°.∴∠ECF=135°.
∴∠AME=∠ECF.
∵∠AEB+∠BAE=90°,∠AEB+CEF=90°,
∴∠BAE=∠CEF.
在△AME和 △BCF中
∠EAM=∠EHC
AM=EC
∠AME=∠ECF
∴△AME≌△BCF(ASA).
∴AE=EF.
②成立
在BA的延长线上取一点N,使AN=CE,连接NE.
∴BN=BE.
∴∠ENB=∠FCE=45°.
∴∠ANE=∠CEF=135`
四边形ABCD是正方形,
∴AD‖BE.
∴∠DAE=∠BEA.
∴∠NAE=∠CEF.
在△ANE和△ECF中
∠ANE=∠CEF
AN=CE
∠NAE=∠FCE
∴△ANE≌△ECF(ASA).
∴AE=EF.