幂级数求和中,逐项求导或逐项积分到底该如何操作?
1个回答

①∑(n从1到正无穷)(-1)^(n-1) * (2x)^(2n-1) / (2n-1)

=∑(n从1到正无穷)(-1)^(n-1) ∫(2x)^(2n-2) dx(积分区间为0到x,下同)

=∑(n从1到正无穷)(-1)^(n-1)∫(4x²)^(n-1)dx

=∑(n从1到正无穷)∫(-4x²)^(n-1)dx

=∫[∑(n从1到正无穷)(-4x²)^(n-1)]dx

=∫[1/(1+4x²)]dx

=arctan2x

②∑(n从1到正无穷)n *(n+2)X^2n

=1/2∑(n从1到正无穷)2n(n+2)x^2n

=(1/2)x∑(n从1到正无穷)(n+2)2nx^(2n-1)

=(1/2)x∑(n从1到正无穷)(n+2)[x^(2n)]′

=(1/2)x[∑(n从1到正无穷)(n+2)x^(2n)]′

∑(n从1到正无穷)(n+2)x^(2n)

=1/(2x³)∑(n从1到正无穷)(2n+4)x^(2n+3)

=1/(2x³)∑(n从1到正无穷)[x^(2n+4)]′

=1/(2x³)[∑(n从1到正无穷)x^(2n+4)]′

=1/(2x³)[x^6/(1-x²)]′

=x²(3-2x²)/(1-x²)²

原式=(1/2)x[∑(n从1到正无穷)(n+2)x^(2n)]′

=(1/2)x[x²(3-2x²)/(1-x²)²]′

=x²(3-x²) /(1-x)³